Regression

Notation

- We need to extend our notation of the regression function to reflect the number of observations.
- As usual, we'll work with an iid random sample of n observations.
- If we use the subscript i to indicate a particular observation in our sample, our regression function with one independent variable is:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \quad \text { for } i=1,2, \ldots, n
$$

- So really we have n equations (one for each observation):

$$
\begin{aligned}
& Y_{1}=\beta_{0}+\beta_{1} X_{1}+\varepsilon_{1} \\
& Y_{2}=\beta_{0}+\beta_{1} X_{2}+\varepsilon_{2} \\
& \vdots \\
& Y_{n}=\beta_{0}+\beta_{1} X_{n}+\varepsilon_{n}
\end{aligned}
$$

Notice that the coefficients β_{0} and β_{l} are the same in each equation. The only thing that varies across equations is the data $\left(Y_{i}, X_{i}\right)$ and the error ε_{i}.

Notation

- If we have more (say k) independent variables, then we need to extend our notation further.
- We could use a different letter for each variable (i.e., X, Z, W, etc.) but instead we usually just introduce another subscript on the X.
- So now we have two subscripts: one for the variable number (first subscript) and one for the observation number (second subscript).

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}
$$

- What do the regression coefficients measure now? They are partial derivatives, or marginal effects. That is,

$$
\beta_{1}=\frac{\partial Y_{i}}{\partial X_{1 i}} \quad \beta_{2}=\frac{\partial Y_{i}}{\partial X_{2 i}} \cdots \beta_{k}=\frac{\partial Y_{i}}{\partial X_{k i}}
$$

So, β_{l} measures the effect on Y_{i} of a one unit increase in $X_{1 i}$ holding all the other variables $X_{2 i}, X_{3 i}, \ldots, X_{k i}$ and ε_{i} constant.

Data Generating Function

- Assume that the data X and Y satisfy (are generated by):

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}
$$

- The coefficients (β) and the errors $\left(\varepsilon_{i}\right)$ are not observed.
- Sometimes our primary interest is the coefficients themselves
- β_{k} measures the marginal effect of variable $X_{k i}$ on the dependent variable Y_{i}.
- Sometimes we're more interested in predicting Y_{i}.
- if we have sample estimates of the coefficients, we can calculate predicted values:

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{k} X_{k i}
$$

- In either case, we need a way to estimate the unknown β 's.
- That is, we need a way to compute $\hat{\beta}$'s from a sample of data
- It turns out there are lots of ways to estimate the β 's (compute $\hat{\beta}^{\prime}$ s).
- By far the most common method is called ordinary least squares (OLS).

Linearity

- There are two kinds of linearity present in the regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}
$$

- This regression function is linear in X.
- counter-example: $Y=\beta_{0}+\beta_{1} X^{2}$
- This regression function is linear in the coefficients β_{0} and β_{1}
- counter-example: $Y=\beta_{0}+X^{\beta}$
- Neither kind of linearity is necessary for estimation in general.
- We focus our attention mostly on what econometricians call the linear regression model.
- The linear regression model requires linearity in the coefficients, but not linearity in X.
- When we say "linear regression model" we mean a model that is linear in the coefficients.

The Error Term

- Econometricians recognize that the regression function is never an exact representation of the relationship between dependent and independent variables.
- e.g., there is no exact relationship between income (Y) and education, gender, etc., because of things like luck
- There is always some variation in Y that cannot be explained by the model.
- There are many possible reasons: there might be "important" explanatory variables that we leave out of the model; we might have the wrong functional form (f), variables might be measured with error, or maybe there's just some randomness in outcomes.
- These are all sources of error. To reflect these kinds of error, we include a stochastic (random) error term in the model.
- The error term reflects all the variation in Y that cannot be explained by X.
- Usually, we use epsilon (ε) to represent the error term.

More About the Error Term

- It is helpful to think of the model as having two components:
1.a deterministic (non-random) component
2.a stochastic (random) component ε
- Basically, we are decomposing Y into the part that we can explain using X and the part that we cannot explain using X (i.e., the error ε)
- We usually assume things about the error ε.
- I want to assume $E\left[\varepsilon_{i} \mid X_{i}\right]=0$ and $E\left[\varepsilon_{i} \mid \varepsilon_{j}\right]=0$ for a while.
- This is overly strong, but is okay for a while.

Conditional Expectation Functions

- The mean of the conditional distribution of Y given X is called the conditional expectation (or conditional mean) of Y given X.
- It's the expected value of Y, given that X takes a particular value.
- From Review 1 , in general, it ds computed just like a regular (unconditional) expectation, but uses the conditional distribution instead of the marginal.
- If Y takes one of k possible values $y_{l}, y_{2}, \ldots, y_{k}$ then:

$$
E(Y \mid X=x)=\sum_{i=1}^{k} y_{i} \operatorname{Pr}\left(Y=y_{i} \mid X=x\right)
$$

- The conditional expectation of Y given the linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}
$$

- is

$$
E\left[Y_{i} \mid X_{1}=X_{1 i}, \ldots, X_{k}=X_{k i}\right]=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}
$$

- because $E\left[\varepsilon_{i} \mid X_{1}=X_{1 i}, \ldots, X_{k}=X_{k i}\right]=0$

Marginal Effect

- Given these assumptions on the error term, we can strengthen the meaning of the coefficient: it is the marginal effect of X on Y, regardless of the value of ε.
- This is because the derivative of Y with respect to X, which could depend on the value of ε through the dependence of ε on X, does not depend on the value of ε.
- Prove this via application of the chain rule.

What is Known, What is Unknown, and What is Assumed

- It is useful to summarize what is known, what is unknown, and what is hypothesized.
- Known: Y_{i} and $X_{1 i}, X_{2 i}, \ldots, X_{k i}$ (the data)
- Unknown: $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$ and ε_{i} (the coefficients and errors)
- Hypothesized: the form of the regression function, e.g.,

$$
\mathrm{E}\left(Y_{i} \mid X_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{k} X_{k i}
$$

- We use the observed data to learn about the unknowns (coefficients and errors), and then we can test the hypothesized form of the regression function.
- We can hope to learn a lot about the β s because they are the same for each observation.
- We can't hope to learn much about the ε_{i} because there is only one observation on each of them.

Even Simpler Regression

- Suppose we have a linear regression model with one independent variable and NO INTERCEPT:

$$
Y_{i}=\beta X_{i}+\varepsilon_{i}
$$

- Suppose also that

$$
E\left[\varepsilon_{i}\right]=0 \text { and } E\left[\left(\varepsilon_{i}\right)^{2}\right]=\sigma^{2} \text { and } E\left[\left(\varepsilon_{i} \varepsilon_{j}\right)\right]=0 \text { forall } i, j
$$

- Now, define an estimator as the number $\hat{\beta}$ that minimises the sum of the squared prediction error

$$
e_{i}=Y_{i}-\hat{\beta} X_{i}
$$

- Min

$$
\hat{\beta}
$$

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta} X_{i}\right)^{2}=\sum_{i=1}^{n} Y_{i}^{2}-\sum_{i=1}^{n}\left(2 Y_{i} \hat{\beta} X_{i}\right)+\sum_{i=1}^{n}\left(\hat{\beta} X_{i}\right)^{2}
$$

Minimisation

- The squared Y leading term doesn't have $\hat{\beta}$
- $\operatorname{Min}_{\hat{\beta}}-\sum_{i=1}^{n}\left(2 Y_{i} \hat{\beta} X_{i}\right)+\sum_{i=1}^{n}\left(\hat{\beta} X_{i}\right)^{2}$

$$
-2 \sum_{i=1}^{n}\left(X_{i} Y_{i}\right)+2 \hat{\beta} \sum_{i=1}^{n}\left(X_{i}^{2}\right)=0
$$

$$
-\sum_{i=1}^{n}\left(X_{i} Y_{i}\right)+\hat{\beta} \sum_{i=1}^{n}\left(X_{i}^{2}\right)=0
$$

- First-Order Condition

$$
\hat{\beta} \sum_{i=1}^{n}\left(X_{i}^{2}\right)=\sum_{i=1}^{n}\left(Y_{i} X_{i}\right)
$$

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n}\left(X_{i}^{2}\right)}
$$

OLS Coefficients are Sample Means

- The estimated coefficient is a weighted average of the Y 's:

$$
\begin{array}{|l}
\hat{\beta}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}=\sum_{i=1}^{n} w_{i} Y_{i} \\
w_{i}=\frac{X_{i}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}
\end{array}
$$

- It is a function of the data (a special kind of sample mean), and so it is a statistic.
- It can be used to estimate something we are interested in: the population value of β
- Since it is a statistic, it has a sampling distribution that we can evaluate for bias and variance.

Bias

- Pretend X is not random. Remember assumptions from above:

$$
Y_{i}=\beta X_{i}+\varepsilon_{i}
$$

- $E\left[\varepsilon_{i}\right]=0$ and $E\left[\left(\varepsilon_{i}\right)^{2}\right]=\sigma^{2}$ and $E\left[\left(\varepsilon_{i} \varepsilon_{j}\right)\right]=0$ for all i, j
- Substitute into the estimator and take an expectation:

$$
\begin{aligned}
E[\hat{\beta}] & =E\left[\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right]=E\left[\frac{\sum_{i=1}^{n} X_{i}\left(\beta X_{i}+\varepsilon_{i}\right)}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right] \\
& =\beta E\left[\frac{\sum_{i=1}^{n} X_{i}\left(X_{i}\right)}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right]+E\left[\frac{\sum_{i=1}^{n} X_{i} \varepsilon_{i}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right]=\beta+0=\beta
\end{aligned}
$$

Variance

$$
\begin{aligned}
& =\frac{1}{\left(\sum_{n=1}^{n}\left(X_{i}^{2}\right)\right)^{2}} E\left[X_{1} X_{1}, \xi_{1} \varepsilon_{1}+X_{1} X_{2} X_{i} \varepsilon_{2}+\ldots+X_{n-1} X_{n} \varepsilon_{n-1} \varepsilon_{n-1}+X_{n} X_{\varepsilon} \varepsilon_{n} \varepsilon_{n}\right] \\
& =\frac{1}{\left(\sum_{i=1}^{n}\left(x_{i}^{2}\right)\right)^{2}} E\left[\sum_{i=1}^{n}\left(x_{i}\right)^{2}\left(\varepsilon_{i}\right)^{2}\right]=\frac{\sum_{i=1}^{n}\left(X_{i}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}^{2}\right)\right)^{2}} E\left[\left(\varepsilon_{i}\right)^{2}\right]=\frac{1}{\sum_{i=1}^{n}\left(x_{i}^{2}\right)} \sigma^{2}
\end{aligned}
$$

Simple Linear Regression

- Suppose now that we have a linear regression model with one independent variable and an intercept: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}$
- Suppose also that

$$
E\left[\varepsilon_{i}\right]=0 \text { and } E\left[\left(\varepsilon_{i}\right)^{2}\right]=\sigma^{2} \text { and } E\left[\left(\varepsilon_{i} \varepsilon_{j}\right)\right]=0 \text { forall } i, j
$$

- Now, define an estimator as the number $\hat{\beta}$ that minimises the sum of the squared prediction error

$$
e_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
$$

- $\underset{\hat{\beta}}{\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}}$

Minimisation

First-Order Condition, apply the chain rule to the square function:

$$
\begin{aligned}
& 2 \sum_{i=1}^{n} \frac{\partial\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)}{\partial \hat{\beta}_{0}}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
& 2 \sum_{i=1}^{n} \frac{\partial\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)}{\partial \hat{\beta}_{1}}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0
\end{aligned}
$$

Differentiate again:

$$
\begin{aligned}
-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=2 \sum_{i=1}^{n} e_{i}=0 \\
-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=2 \sum_{i=1}^{n} X_{i} e_{i}=0
\end{aligned}
$$

Mean of residuals is zero; Covariance of residuals and X is zero.

Minimisation

$$
\begin{array}{|c|c|}
\hline \begin{array}{c}
\hat{\beta}_{0}: \\
-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\bar{Y}-\hat{\beta}_{0}-\hat{\beta}_{1} \bar{X}=0 \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{array} & \begin{array}{r}
-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\sum_{i=1}^{n} X_{i}\left(Y_{i}-\left(\bar{Y}-\hat{\beta}_{1} \bar{X}\right)-\hat{\beta}_{1} X_{i}\right)=0 \\
\sum_{i=1}^{n} X_{i}\left(\left(Y_{i}-\bar{Y}\right)-\hat{\beta}_{1}\left(X_{i}-\bar{X}\right)\right)=0 \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)} \\
\hline \begin{array}{l}
\text { FOC for } \hat{\beta}_{0} \text { implies : } \\
-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\bar{X} \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\sum_{i=1}^{n} \bar{X}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0
\end{array} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hline
\end{array}
\end{array}
$$

OLS Coefficients are Sample Means

- The estimated coefficients are weighted averages of the Y 's:

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\sum_{i=1}^{n}\left(\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{1}{n}\right) Y_{i} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X}\left(\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{1}{n}\right)\right) Y_{i}
\end{aligned}
$$

- It is a function of the data (a special kind of sample mean), and so it is a statistic.
- It can be used to estimate something we are interested in: the population value of β
- Since it is a statistic, it has a sampling distribution that we can evaluate for bias and variance.

OLS estimator is unbiased

$$
\begin{aligned}
E\left[\hat{\beta}_{1}\right] & =E\left[\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]=E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right] \\
& =E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}-\beta_{0}-\beta_{1} \bar{X}-\bar{\varepsilon}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right] \\
& =\beta_{1} E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]+E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \varepsilon_{i}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right]-E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \overline{\mathcal{E}}}{\sum_{i=1}^{n}\left(X_{i}{ }^{2}\right)}\right] \\
& \left.=\beta_{1}+0+0=\beta_{1}\right]
\end{aligned}
$$

Variance of OLS estimator

- Variance is more cumbersome to work out by hand, so I won't do it:
- Top looks like the
- "even simpler" model.

$$
\operatorname{Var}\left(\beta_{1}\right)=\frac{1}{\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \bar{X}^{2}} \sigma^{2}
$$

$$
=\frac{1}{n\left(\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)-\bar{X}^{2}\right)} \sigma^{2}
$$

- Where V-hat is the

$$
=\frac{1}{n \operatorname{Var}(X)} \sigma^{2}
$$

- sample variance of X
- $V(X)=E\left[X^{2}\right]-(E[X])^{2}$

In Practise...

- Knowing the summation formulas for OLS estimates is useful for understanding how OLS estimation works.
- once we add more than one independent variable, these summation formulas become cumbersome
- In practice, we never do least squares calculations by hand (that's what computers are for)
- In fact, doing least squares regression in EViews is a piece of cake - time for an example.

Example: Earnings and Weeks Worked

Example: Earnings and Weeks Worked

- Suppose we are interested in how weeks of work relate to earnings.
- our dependent variable $\left(Y_{i}\right)$ will be WAGES
- our independent variable $\left(X_{i}\right)$ will be WKSWRK
- After opening the EViews workfile, there are two ways to set up the equation: 1. select WAGES and then WKSWRK (the order is important), then right-click one of the selected objects, and OPEN -> AS EQUATION, with an IF WAGES<8000000 and WKSWRK<99 in the sample box (to get rid of both types of missing)
or

2. QUICK -> ESTIMATE EQUATION and then in the EQUATION SPECIFICATION dialog box, type:
wages c wkswrk
(the first variable in the list is the dependent variable, the remaining variables are the independent variables including the intercept c) and

- if wages<8000000 and wkswrk<99 and agegrp>5 and agegrp<17 in the sample box
- You'll see a drop down box for the estimation METHOD, and notice that least squares (LS) is the default. Click OK.
- It's as easy as that. Print the output to rich text (rtf). Your results should look like the next slide ...

Data and Regression Line

Eviews Regression Output

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:18
- Sample: 156529 IF WAGES<8000000 AND WKSWRK<99 AND
- AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
- Variable
- C
- WKSWRK

Coefficient
Std. Error
t-Statistic Prob.
910.5101
16.76971
54.29493
0.0000

- R-squared 0.082550 Mean dependent var 34029.35
- Adjusted R-squared 0.082522 S.D. dependent var 49743.57
- S.E. of regression 47646.91 Akaike info criterion 24.38108
- Sum squared resid $7.44 \mathrm{E}+13$ Schwarz criterion 24.38160
- Log likelihood -399421.1 Hannan-Quinn criter. 24.38125
- F-statistic 2947.939 Durbin-Watson stat 2.110695
- Prob(F-statistic) 0.000000

The Data and Regression Line

Low Variance is Good

- Low variance gives you a nice accurate picture of where the coefficient probably is.
- Low variance gives you a test statistic with high power (if the null is false, you'll probably reject).

How Do You Get Low Variance?

- The OLS estimator is unbiased, so it centers on the right thing.
- Its variance $\operatorname{Var}\left(\beta_{1}\right)=\frac{1}{n \operatorname{Var}(X)} \sigma^{2}$ has 3 pieces:
- N
- $\mathrm{V}(\mathrm{X})$
- sigma-squared
- (draw them all)

Eviews Regression Output Again

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:18
- Sample: 156529 IF WAGES<8000000 AND WKSWRK<99 AND
- AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
- Variable
- C
- WKSWRK

Coefficient
Std. Error
t-Statistic Prob.
910.5101
54.29493
0.0000

- R-squared
0.082550
- Adjusted R-squared 0.082522
S.D. dependent var
34029.35
- S.E. of regression 47646.91
- Sum squared resid $7.44 \mathrm{E}+13$
- Log likelihood -399421.1 Hannan-Quinn criter. 24.38125
- F-statistic 2947.939 Durbin-Watson stat 2.110695
- Prob(F-statistic) 0.000000

Is That Coefficient Interesting?

- Weeks worked is correlated with a lot of things, eg, the young and old don't work as many weeks.
- Add age
- Recode agegrp into age:
- series age=@recode(agegrp=6,16,@recode(agegrp=7,18,@recode(agegrp=8,22,@recode(agegrp=9,27,@recode(agegrp=10,32,@recode(agegrp=1 1,37,@recode(agegrp=12,42,@recode(agegrp=13,47,@recode(agegrp=14,52,@recode(agegrp=15,57,@recode(agegrp=16,62,age))))))))))
- Series age2=age*age
- Add age and age2 to regression equation

Regression with More Regressors

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:29
- Sample: 156529 IF WAGES<8000000 AND WKSWRK<99 AND AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
-
- Variable Coefficient Std. Error t-Statistic Prob.
- C
- WKSWRK
- AGE

-46106.19	2375.629	-19.40800	0.0000
745.2725	17.73693	42.01811	0.0000
2125.442	134.6076	15.78991	0.0000
-20.15367	1.683832	-11.96893	0.0000

- AGE2 -20.15367 1.683832 -11.968930 .0000
- R-squared 0.103843 Mean dependent var 34029.35
- Adjusted R-squared 0.103761 S.D. dependent var 49743.57
- S.E. of regression 47092.19 Akaike info criterion 24.35772
- Sum squared resid $7.27 \mathrm{E}+13$ Schwarz criterion 24.35875
- Log likelihood -399036.4 Hannan-Quinn criter. 24.35805
- F-statistic 1265.405 Durbin-Watson stat 2.110714
- Prob(F-statistic) 0.000000

New Regressors

- Age
- What is the marginal effect of age on the conditional expectation of earnings?
$\frac{\partial E[Y]}{\partial \text { age }}=\beta_{\text {age }}+2 \beta_{\text {age } 2} *$ age $=\$ 2125-\$ 20 *$ age
- The marginal effect depends on age.
- Why did the coefficient on weeks worked change?
- Age and age ${ }^{2}$ were previously in the error term.
- They are correlated with weeks worked.

