
Regression



Notation

• We need to extend our notation of the regression function to reflect the number 
of observations.

• As usual, we’ll work with an iid random sample of n observations.
• If we use the subscript i to indicate a particular observation in our sample, our 

regression function with one independent variable is:

• So really we have n equations (one for each observation):
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• So really we have n equations (one for each observation):

Notice that the coefficients β0 and β1 are the same in each equation.  The only 
thing that varies across equations is the data (Yi, Xi) and the error εi.
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Notation

• If we have more (say k) independent variables, then we need to 
extend our notation further.

• We could use a different letter for each variable (i.e., X, Z, W, etc.) 
but instead we usually just introduce another subscript on the X. 

• So now we have two subscripts: one for the variable number (first 
subscript) and one for the observation number (second subscript). 

XXXXY εβββββ ++++++= ⋯

• What do the regression coefficients measure now? They are partial 
derivatives, or marginal effects. That is,

So, β1 measures the effect on Yi of a one unit increase in X1i
holding all the other variables X2i , X3i , ... , Xki and constant.
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Data Generating Function

• Assume that the data X and Y satisfy (are generated by):

• The coefficients (β) and the errors (εi) are not observed.
• Sometimes our primary interest is the coefficients themselves

– βk measures the marginal effect of variable Xki on the dependent variable Yi.
• Sometimes we’re more interested in predicting Y
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• Sometimes we’re more interested in predicting Yi.
– if we have sample estimates of the coefficients, we can calculate predicted 

values:

• In either case, we need a way to estimate the unknown β’s.
– That is, we need a way to compute        from a sample of data   

• It turns out there are lots of ways to estimate the β’s (compute        ).
• By far the most common method is called ordinary least squares (OLS).
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Linearity

• There are two kinds of linearity present in the regression model 

• This regression function is linear in X.
– counter-example: Y= β0 + β1X2

• This regression function is linear in the coefficients β0 and β1
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• This regression function is linear in the coefficients β0 and β1

– counter-example: Y= β0 + X β

• Neither kind of linearity is necessary for estimation in general.
• We focus our attention mostly on what econometricians call the linear 

regression model. 
• The linear regression model requires linearity in the coefficients, but not

linearity in X.
– When we say “linear regression model” we mean a model that is linear in the 

coefficients.



The Error Term

• Econometricians recognize that the regression function is never an exact
representation of the relationship between dependent and independent 
variables.

– e.g., there is no exact relationship between income (Y) and education, gender, etc., 
because of things like luck

• There is always some variation in Y that cannot be explained by the model.
• There are many possible reasons: there might be “important” explanatory 

variables that we leave out of the model; we might have the wrong variables that we leave out of the model; we might have the wrong 
functional form (f), variables might be measured with error, or maybe 
there’s just some randomness in outcomes.

• These are all sources of error.  To reflect these kinds of error, we include a 
stochastic (random) error term in the model.

• The error term reflects all the variation in Y that cannot be explained by X.
• Usually, we use epsilon (ε) to represent the error term.



More About the Error Term

• It is helpful to think of the model as having two components:

1.a deterministic(non-random) component

2.a stochastic(random) component ε

• Basically, we are decomposing Y into the part that we can 
explain using X and the part that we cannot explain using X
(i.e., the error ε)

• We usually assume things about the error ε.
• I want to assume E[εi|Xi]=0 and E[εi|εj]=0 for a while.

– This is overly strong, but is okay for a while.



Conditional Expectation Functions

• The mean of the conditional distribution of Y given X is called the conditional 
expectation (or conditional mean) of Y given X.

• It’s the expected value of Y, given that X takes a particular value.
• From Review 1, in general, it is computed just like a regular (unconditional) 

expectation, but uses the conditional distribution instead of the marginal.
– If Y takes one of k possible values y1, y2, ... , yk then:
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• The conditional expectation of Ygiven the linear regression 
model

• is  

• because 

=i 1
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Marginal Effect

• Given these assumptions on the error term, we 
can strengthen the meaning of the coefficient: 
it is the marginal effect of X on Y, regardless of 
the value of ε.

• This is because the derivative of Ywith respect • This is because the derivative of Ywith respect 
to X, which coulddepend on the value of ε
through the dependence of ε on X, does not 
depend on the value of ε.
– Prove this via application of the chain rule.



What is Known, What is Unknown, and 

What is Assumed

• It is useful to summarize what is known, what is unknown, and what 
is hypothesized.

• Known: Yi andX1i , X2i , ... , Xki (the data)
• Unknown: β0 , β1 , β2 , ... , βk and εi (the coefficients and errors)
• Hypothesized: the form of the regression function, e.g., 

E(Y | X ) = β + β X + β X + β XE(Yi | Xi) = β0 + β1X1i + β2X2i + βkXki

• We use the observed data to learn about the unknowns (coefficients 
and errors), and then we can test the hypothesized form of the 
regression function.

• We can hope to learn a lot about the βs because they are the same for 
each observation.

• We can’t hope to learn much about the εi because there is only one 
observation on each of them.



Even Simpler Regression

• Suppose we have a linear regression model with one independent 
variable and NO INTERCEPT:

• Suppose also that 
i i iY Xβ ε= +
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• Now, define an estimator as the number     that minimises the sum 

of the squared  prediction error
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Minimisation

• The squared Y leading term doesn’t have 

• Min

β̂
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OLS Coefficients are Sample Means

• The estimated coefficient is a weighted average of the Y’s:
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• It is a function of the data (a special kind of sample mean), and so it 
is a statistic.

• It can be used to estimate something we are interested in: the 
population value of 

• Since it is a statistic, it has a sampling distribution that we can 
evaluate for bias and variance.
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Bias

• Pretend X is not random. Remember assumptions from above:

•

•

i i iY Xβ ε= +

( ) ( )2 2[ ] 0 [ ] [ ] 0 ,i i i jE and E and E forall i jε ε σ ε ε= = =

• Substitute into the estimator and take an expectation:
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Variance

•
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Simple Linear Regression

• Suppose now that we have a linear regression model with one 
independent variable and an intercept:

• Suppose also that 

0 1i i iY Xβ β ε= + +
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• Now, define an estimator as the number     that minimises the sum 

of the squared  prediction error
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Minimisation

First-Order Condition, apply the chain rule to the square function:
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Differentiate again:

Mean of residuals is zero; Covariance of residuals and X is zero.
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Minimisation
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OLS Coefficients are Sample Means

• The estimated coefficients are weighted averages of the Y’s:
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• It is a function of the data (a special kind of sample mean), and so it 
is a statistic.

• It can be used to estimate something we are interested in: the 
population value of 

• Since it is a statistic, it has a sampling distribution that we can 
evaluate for bias and variance.
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OLS estimator is unbiased
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Variance of OLS estimator

• Variance is more cumbersome to work out by 

hand, so I won’t do it:

• Top looks like the

• “even simpler” model.
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In Practise...

• Knowing the summation formulas for OLS 
estimates is useful for understanding how OLS 
estimation works.
– once we add more than one independent variable, 

these summation formulas become cumbersome these summation formulas become cumbersome 
– In practice, we never do least squares calculations 

by hand (that’s what computers are for)

• In fact, doing least squares regression in 
EViews is a piece of cake – time for an 
example.



Example: Earnings and Weeks Worked
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Example: Earnings and Weeks Worked

• Suppose we are interested in how weeks of work relate to earnings.
– our dependent variable (Yi) will be WAGES
– our independent variable (Xi) will be WKSWRK

• After opening the EViews workfile, there are two ways to set up the equation:
1. select WAGES and then WKSWRK (the order is important), then right-click 
one of the selected objects, and OPEN -> AS EQUATION , with an IF 
WAGES<8000000 and WKSWRK<99 in the sample box (to get rid of both 
types of missing)types of missing)
or
2. QUICK -> ESTIMATE EQUATION and then in the EQUATION 
SPECIFICATION dialog box, type:
wages c wkswrk
(the first variable in the list is the dependent variable, the remaining variables 
are the independent variables including the intercept c) and 

• if wages<8000000 and wkswrk<99 and agegrp>5 and 
agegrp<17 in the sample box

• You’ll see a drop down box for the estimation METHOD, and notice that least 
squares (LS) is the default. Click OK.

• It’s as easy as that.  Print the output to rich text (rtf).  Your results should look 
like the next slide ...



Data and Regression Line
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Eviews Regression Output

• Dependent Variable: WAGES

• Method: Least Squares

• Date: 10/19/10   Time: 10:18

• Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND

• AGEGRP>5 AND AGEGRP<17

• Included observations: 32765

•
• Variable Coefficient Std. Error t-Statistic Prob.  

• C -3910.838 746.7136 -5.237401 0.0000

• WKSWRK 910.5101 16.76971 54.29493 0.0000

•
• R-squared 0.082550 Mean dependent var 34029.35

• Adjusted R-squared 0.082522 S.D. dependent var 49743.57

• S.E. of regression 47646.91 Akaike info criterion 24.38108

• Sum squared resid 7.44E+13 Schwarz criterion 24.38160

• Log likelihood -399421.1 Hannan-Quinn criter. 24.38125

• F-statistic 2947.939 Durbin-Watson stat 2.110695

• Prob(F-statistic) 0.000000



The Data and Regression Line
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Low Variance is Good

• Low variance gives you a nice accurate picture 

of where the coefficient probably is.

• Low variance gives you a test statistic with 

high power (if the null is false, you’ll probably high power (if the null is false, you’ll probably 

reject).



How Do You Get Low Variance?

• The OLS estimator is unbiased, so it centers on 

the right thing.

• Its variance                                    has 3 pieces:

• N
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Eviews Regression Output Again

• Dependent Variable: WAGES

• Method: Least Squares

• Date: 10/19/10   Time: 10:18

• Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND

• AGEGRP>5 AND AGEGRP<17

• Included observations: 32765

•
• Variable Coefficient Std. Error t-Statistic Prob.  

• C -3910.838 746.7136 -5.237401 0.0000

• WKSWRK 910.5101 16.76971 54.29493 0.0000

•
• R-squared 0.082550 Mean dependent var 34029.35

• Adjusted R-squared 0.082522 S.D. dependent var 49743.57

• S.E. of regression 47646.91 Akaike info criterion 24.38108

• Sum squared resid 7.44E+13 Schwarz criterion 24.38160

• Log likelihood -399421.1 Hannan-Quinn criter. 24.38125

• F-statistic 2947.939 Durbin-Watson stat 2.110695

• Prob(F-statistic) 0.000000



Is That Coefficient Interesting?

• Weeks worked is correlated with a lot of 

things, eg, the young and old don’t work as 

many weeks.

• Add age• Add age

– Recode agegrp into age:
– series 

age=@recode(agegrp=6,16,@recode(agegrp=7,18,@recode(agegrp=8,22,@recode(agegrp=9,27,@recode(agegrp=10,32,@recode(agegrp=1

1,37,@recode(agegrp=12,42,@recode(agegrp=13,47,@recode(agegrp=14,52,@recode(agegrp=15,57,@recode(agegrp=16,62,age)))))))))) )

– Series age2=age*age

• Add age and age2 to regression equation



Regression with More Regressors

• Dependent Variable: WAGES

• Method: Least Squares

• Date: 10/19/10   Time: 10:29

• Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND AGEGRP>5 AND AGEGRP<17

• Included observations: 32765

•
• Variable Coefficient Std. Error t-Statistic Prob.  

• C -46106.19 2375.629 -19.40800 0.0000

• WKSWRK 745.2725 17.73693 42.01811 0.0000

• AGE 2125.442 134.6076 15.78991 0.0000

• AGE2 -20.15367 1.683832 -11.96893 0.0000

•
• R-squared 0.103843 Mean dependent var 34029.35

• Adjusted R-squared 0.103761 S.D. dependent var 49743.57

• S.E. of regression 47092.19 Akaike info criterion 24.35772

• Sum squared resid 7.27E+13 Schwarz criterion 24.35875

• Log likelihood -399036.4 Hannan-Quinn criter. 24.35805

• F-statistic 1265.405 Durbin-Watson stat 2.110714

• Prob(F-statistic) 0.000000



New Regressors

• Age

– What is the marginal effect of age on the 

conditional expectation of earnings?
[ ]

2 $2125 $20*
E Y

age ageβ β∂ = + ∗ = −

– The marginal effect depends on age.

• Why did the coefficient on weeks worked change?

– Age and age2 were previously in the error term.

– They are correlated with weeks worked.

2

[ ]
2 $2125 $20*age age

E Y
age age

age
β β∂ = + ∗ = −

∂


