Regression

Notation

- We need to extend our notation of the regression function to reflect the number of observations.
- As usual, we'll work with an iid random sample of *n* observations.
- If we use the subscript *i* to indicate a particular observation in our sample, our regression function with one independent variable is:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \quad \text{for } i = 1, 2, ..., n$$

• So really we have *n* equations (one for each observation):

$$Y_{1} = \beta_{0} + \beta_{1}X_{1} + \varepsilon_{1}$$

$$Y_{2} = \beta_{0} + \beta_{1}X_{2} + \varepsilon_{2}$$

$$\vdots$$

$$Y_{n} = \beta_{0} + \beta_{1}X_{n} + \varepsilon_{n}$$

Notice that the coefficients β_0 and β_1 are **the same** in each equation. The only thing that varies across equations is the data (Y_i, X_i) and the error ε_i .

Notation

- If we have more (say *k*) independent variables, then we need to extend our notation further.
- We could use a different letter for each variable (i.e., *X*, *Z*, *W*, etc.) but instead we usually just introduce another subscript on the *X*.
- So now we have two subscripts: one for the variable number (first subscript) and one for the observation number (second subscript).

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

• What do the regression coefficients measure now? They are **partial** derivatives, or marginal effects. That is,

$$\beta_1 = \frac{\partial Y_i}{\partial X_{1i}} \quad \beta_2 = \frac{\partial Y_i}{\partial X_{2i}} \quad \cdots \quad \beta_k = \frac{\partial Y_i}{\partial X_{ki}}$$

So, β_1 measures the effect on Y_i of a one unit increase in X_{1i} holding all the other variables X_{2i} , X_{3i} , ..., X_{ki} and ε_i constant.

Data Generating Function

• Assume that the data *X* and *Y* satisfy (are generated by):

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

- The coefficients (β) and the errors (ε_i) are **not observed**.
- Sometimes our primary interest is the coefficients themselves
 - β_k measures the marginal effect of variable X_{ki} on the dependent variable Y_{i} .
- Sometimes we're more interested in predicting Y_{i} .
 - if we have sample estimates of the coefficients, we can calculate **predicted** values: $\hat{a} = \hat{a} = \hat{a} = \hat{a}$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \dots + \hat{\beta}_{k}X_{ki}$$

- In either case, we need a way to estimate the unknown β 's.
 - That is, we need a way to compute $\hat{\beta}$'s from a sample of data
- It turns out there are lots of ways to estimate the β 's (compute $\hat{\beta}'_{s}$).
- By far the most common method is called ordinary least squares (OLS).

Linearity

• There are **two** kinds of linearity present in the regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

- This regression function is **linear in** *X*.
 - *counter-example:* $Y = \beta_0 + \beta_1 X^2$
- This regression function is **linear in the coefficients** β_0 and β_1
 - *counter-example:* $Y = \beta_0 + X^{\beta}$
- Neither kind of linearity is necessary for estimation *in general*.
- We focus our attention mostly on what econometricians call the **linear** regression model.
- The linear regression model **requires** linearity in the coefficients, but **not** linearity in *X*.
 - When we say "linear regression model" we mean a model that is *linear in the coefficients*.

The Error Term

- Econometricians recognize that the regression function is never an **exact** representation of the relationship between dependent and independent variables.
 - e.g., there is no exact relationship between income (*Y*) and education, gender, etc., because of things like luck
- There is **always** some variation in *Y* that cannot be explained by the model.
- There are many possible reasons: there might be "important" explanatory variables that we leave out of the model; we might have the wrong functional form (*f*), variables might be measured with error, or maybe there's just some randomness in outcomes.
- These are all sources of **error**. To reflect these kinds of error, we include a **stochastic (random) error term** in the model.
- The error term reflects all the variation in *Y* that cannot be explained by *X*.
- Usually, we use epsilon (ε) to represent the error term.

More About the Error Term

• It is helpful to think of the model as having two components:

1.a *deterministic* (non-random) component

2.a *stochastic* (random) component ε

- Basically, we are decomposing Y into the part that we can explain using X and the part that we cannot explain using X (i.e., the error ε)
- We usually assume things about the error ε .
- I want to assume $E[\varepsilon_i | X_i] = 0$ and $E[\varepsilon_i | \varepsilon_i] = 0$ for a while.
 - This is overly strong, but is okay for a while.

Conditional Expectation Functions

- The mean of the conditional distribution of Y given X is called the **conditional** expectation (or conditional mean) of Y given X.
- It's the expected value of *Y*, given that *X* takes a particular value.
- From Review 1, in general, it is computed just like a regular (unconditional) expectation, but uses the conditional distribution instead of the marginal.
 - If Y takes one of k possible values y_1, y_2, \dots, y_k then:

$$E(Y | X = x) = \sum_{i=1}^{k} y_i \Pr(Y = y_i | X = x)$$

• The conditional expectation of *Y* given the linear regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

$$E[Y_i | X_1 = X_{1i}, ..., X_k = X_{ki}] = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki}$$

• because $E[\mathcal{E}_i | X_1 = X_{1i}, ..., X_k = X_{ki}] = 0$

Marginal Effect

- Given these assumptions on the error term, we can strengthen the meaning of the coefficient: it is the marginal effect of *X* on *Y*, regardless of the value of *ε*.
- This is because the derivative of *Y* with respect to *X*, which *could* depend on the value of ε through the dependence of ε on *X*, does not depend on the value of ε.
 - Prove this via application of the chain rule.

What is Known, What is Unknown, and What is Assumed

- It is useful to summarize what is known, what is unknown, and what is hypothesized.
- **Known:** Y_i and X_{1i} , X_{2i} , ..., X_{ki} (the data)
- Unknown: β_0 , β_1 , β_2 , ..., β_k and ε_i (the coefficients and errors)
- **Hypothesized:** the form of the regression function, e.g., $E(Y_i / X_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_k X_{ki}$
- We use the observed data to learn about the unknowns (coefficients and errors), and then we can test the hypothesized form of the regression function.
- We can hope to learn a lot about the β s because they are the same for each observation.
- We can't hope to learn much about the ε_i because there is only one observation on each of them.

Even Simpler Regression

- Suppose we have a linear regression model with one independent variable and NO INTERCEPT: $Y_i = \beta X_i + \varepsilon_i$
- Suppose also that

$$E[\varepsilon_i] = 0 \text{ and } E[(\varepsilon_i)^2] = \sigma^2 \text{ and } E[(\varepsilon_i \varepsilon_j)] = 0 \text{ for all } i, j$$

• Now, define an estimator as the number $\hat{\beta}$ that minimises the sum of the squared prediction error

$$e_i = Y_i - \hat{\beta} X_i$$

• Min

$$\hat{\beta}$$

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(Y_i - \hat{\beta} X_i \right)^2 = \sum_{i=1}^{n} Y_i^2 - \sum_{i=1}^{n} \left(2Y_i \hat{\beta} X_i \right) + \sum_{i=1}^{n} \left(\hat{\beta} X_i \right)^2$$

Minimisation

The squared Y leading term. • Min $\hat{\beta}$ $-\sum_{i=1}^{n} (2Y_i \hat{\beta} X_i) + \sum_{i=1}^{n} (\hat{\beta} X_i)^2$ $-2\sum_{i=1}^{n} (X_i Y_i) + 2\hat{\beta} \sum_{i=1}^{n} (X_i^2) = 0$ $-\sum_{i=1}^{n} (X_i Y_i) + \hat{\beta} \sum_{i=1}^{n} (X_i^2) = 0$ $\hat{\beta} \sum_{i=1}^{n} (X_i^2) = \sum_{i=1}^{n} (Y_i X_i)$ $\hat{\gamma} X_i Y_i$ $\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} (X_i^2)}$

OLS Coefficients are Sample Means

• The estimated coefficient is a weighted average of the *Y*'s:

$$\hat{\boldsymbol{\beta}} = \frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)} = \sum_{i=1}^{n} w_{i} Y_{i}$$
$$w_{i} = \frac{X_{i}}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)}$$

- It is a function of the data (a special kind of sample mean), and so it is a *statistic*.
- It can be used to estimate something we are interested in: the population value of β
- Since it is a statistic, it has a sampling distribution that we can evaluate for bias and variance.

Bias

- Pretend *X* is not random. Remember assumptions from above: $\overline{Y_i = \beta X_i + \varepsilon_i}$
- $E[\varepsilon_i] = 0 \text{ and } E[(\varepsilon_i)^2] = \sigma^2 \text{ and } E[(\varepsilon_i \varepsilon_j)] = 0 \text{ for all } i, j$
- Substitute into the estimator and take an expectation:

$$E\left[\hat{\beta}\right] = E\left[\frac{\sum_{i=1}^{n} X_{i}Y_{i}}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)}\right] = E\left[\frac{\sum_{i=1}^{n} X_{i}\left(\beta X_{i} + \varepsilon_{i}\right)}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)}\right]$$
$$= \beta E\left[\frac{\sum_{i=1}^{n} X_{i}\left(X_{i}\right)}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)}\right] + E\left[\frac{\sum_{i=1}^{n} X_{i}\varepsilon_{i}}{\sum_{i=1}^{n} \left(X_{i}^{2}\right)}\right] = \beta + 0 = \beta$$

Variance

Simple Linear Regression

- Suppose now that we have a linear regression model with one independent variable and an intercept: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Suppose also that

$$E[\varepsilon_i] = 0 \text{ and } E[(\varepsilon_i)^2] = \sigma^2 \text{ and } E[(\varepsilon_i \varepsilon_j)] = 0 \text{ for all } i, j$$

• Now, define an estimator as the number $\hat{\beta}$ that minimises the sum of the squared prediction error

$$e_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

• Min
$$\hat{\beta}$$
 $\left| \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \right)^2 \right|$

Minimisation

First-Order Condition, apply the chain rule to the square function:

$$\begin{aligned} 2\sum_{i=1}^{n} \frac{\partial \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right)}{\partial \hat{\beta}_{0}} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) &= 0\\ 2\sum_{i=1}^{n} \frac{\partial \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right)}{\partial \hat{\beta}_{1}} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) &= 0 \end{aligned}$$

Differentiate again:

$$-2\sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) = 2\sum_{i=1}^{n} e_{i} = 0$$

$$-2\sum_{i=1}^{n} X_{i} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) = 2\sum_{i=1}^{n} X_{i}e_{i} = 0$$

Mean of residuals is zero; Covariance of residuals and X is zero.

Minimisation

$$\hat{\beta}_{0}:$$

$$-2\sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) = 0$$

$$\frac{1}{n}\sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}\right) = 0$$

$$\overline{Y} - \hat{\beta}_{0} - \hat{\beta}_{1}\overline{X} = 0$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$\begin{split} \widehat{\boldsymbol{\beta}_{1}} : \\ -2\sum_{i=1}^{n} X_{i} \left(Y_{i} - \hat{\boldsymbol{\beta}_{0}} - \hat{\boldsymbol{\beta}_{1}} X_{i}\right) = 0 \\ \sum_{i=1}^{n} X_{i} \left(Y_{i} - \left(\overline{Y} - \hat{\boldsymbol{\beta}_{1}} \overline{X}\right) - \hat{\boldsymbol{\beta}_{1}} X_{i}\right) = 0 \\ \sum_{i=1}^{n} X_{i} \left(\left(Y_{i} - \overline{Y}\right) - \hat{\boldsymbol{\beta}_{1}} \left(X_{i} - \overline{X}\right)\right) = 0 \\ \widehat{\boldsymbol{\beta}_{1}} = \frac{\sum_{i=1}^{n} X_{i} \left(Y_{i} - \overline{Y}\right)}{\sum_{i=1}^{n} X_{i} \left(X_{i} - \overline{X}\right)} \end{split}$$

$$so we can write \widehat{\boldsymbol{\beta}_{1}} : \\ -2\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \hat{\boldsymbol{\beta}_{0}} - \hat{\boldsymbol{\beta}_{1}} X_{i}\right) = 0 \\ \widehat{\boldsymbol{\beta}_{1}} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)} \end{split}$$

$$FOC \text{ for } \hat{\beta}_0 \text{ implies}:$$
$$-2\sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i\right) = 0$$
$$\overline{X} \sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i\right) = 0$$
$$\sum_{i=1}^n \overline{X} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i\right) = 0$$

OLS Coefficients are Sample Means

• The estimated coefficients are weighted averages of the *Y*'s:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} = \sum_{i=1}^{n} \left(\frac{\left(X_{i} - \overline{X}\right)}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} - \frac{1}{n}\right) \mathbf{Y}_{i}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X} = \sum_{i=1}^{n} \left(\frac{1}{n} - \overline{X}\left(\frac{\left(X_{i} - \overline{X}\right)}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} - \frac{1}{n}\right)\right) \mathbf{Y}_{i}$$

- It is a function of the data (a special kind of sample mean), and so it is a *statistic*.
- It can be used to estimate something we are interested in: the population value of β
- Since it is a statistic, it has a sampling distribution that we can evaluate for bias and variance.

OLS estimator is unbiased

$$E\left[\hat{\beta}_{1}\right] = E\left[\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right] = E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(\beta_{0} + \beta_{1}X_{i} + \varepsilon_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right]$$
$$= E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(\beta_{0} + \beta_{1}X_{i} + \varepsilon_{i} - \beta_{0} - \beta_{1}\overline{X} - \overline{\varepsilon})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right]$$
$$= \beta_{1}E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right] + E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})\varepsilon_{i}}{\sum_{i=1}^{n} (X_{i}^{2})}\right] - E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})\overline{\varepsilon}}{\sum_{i=1}^{n} (X_{i}^{2})}\right]$$
$$= \beta_{1} + 0 + 0 = \beta_{1}$$

Variance of OLS estimator

- Variance is more cumbersome to work out by hand, so I won't do it: $Var(\beta_1) = \frac{1}{\sqrt{1-\sigma^2}} \sigma^2$
- Top looks like the
- "even simpler" model.

$$Var(\beta_{1}) = \frac{1}{\left(\sum_{i=1}^{n} X_{i}^{2}\right) - n\overline{X}^{2}}\sigma^{2}$$
$$= \frac{1}{n\left(\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}^{2}\right) - \overline{X}^{2}\right)}\sigma^{2}$$
$$= \frac{1}{nVar(X)}\sigma^{2}$$

- Where V-hat is the
- sample variance of X
- $V(X) = E[X^2] (E[X])^2$

In Practise...

- Knowing the summation formulas for OLS estimates is useful for understanding how OLS estimation works.
 - once we add more than one independent variable, these summation formulas become cumbersome
 - In practice, we never do least squares calculations by hand (that's what computers are for)
- In fact, doing least squares regression in EViews is a piece of cake time for an example.

Example: Earnings and Weeks Worked

Example: Earnings and Weeks Worked

- Suppose we are interested in how weeks of work relate to earnings.
 - our dependent variable (Y_i) will be WAGES
 - our independent variable (X_i) will be WKSWRK
- After opening the EViews workfile, there are two ways to set up the equation: 1. select WAGES and then WKSWRK (the order is important), then right-click one of the selected objects, and OPEN -> AS EQUATION, with an IF WAGES<8000000 and WKSWRK<99 in the sample box (to get rid of both types of missing)

or

2. QUICK -> ESTIMATE EQUATION and then in the EQUATION SPECIFICATION dialog box, type:

wages c wkswrk

(the first variable in the list is the dependent variable, the remaining variables are the independent variables including the intercept c) and

- if wages<8000000 and wkswrk<99 and agegrp>5 and agegrp<17 in the sample box
- You'll see a drop down box for the estimation METHOD, and notice that least squares (LS) is the default. Click OK.
- It's as easy as that. Print the output to rich text (rtf). Your results should look like the next slide ...

Data and Regression Line

Eviews Regression Output

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:18
- Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND
- AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
- •

•	Variable	Coefficient	Std. Error	t-Statistic	Prob.
•	С	-3910.838	746.7136	-5.237401	0.0000
•	WKSWRK	910.5101	16.76971	54.29493	0.0000

•

R-squared	0.082550	Mean dependent var	34029.35
Adjusted R-squared	0.082522	S.D. dependent var	49743.57
S.E. of regression	47646.91	Akaike info criterion	24.38108
Sum squared resid	7.44E+13	Schwarz criterion	24.38160
Log likelihood	-399421.1	Hannan-Quinn criter.	24.38125
F-statistic	2947.939	Durbin-Watson stat	2.110695
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	R-squared0.082550Adjusted R-squared0.082522S.E. of regression47646.91Sum squared resid7.44E+13Log likelihood-399421.1F-statistic2947.939	R-squared0.082550Mean dependent varAdjusted R-squared0.082522S.D. dependent varS.E. of regression47646.91Akaike info criterionSum squared resid7.44E+13Schwarz criterionLog likelihood-399421.1Hannan-Quinn criter.F-statistic2947.939Durbin-Watson stat

• Prob(F-statistic) 0.000000

The Data and Regression Line

Low Variance is Good

- Low variance gives you a nice accurate picture of where the coefficient probably is.
- Low variance gives you a test statistic with high power (if the null is false, you'll probably reject).

How Do You Get Low Variance?

- The OLS estimator is unbiased, so it centers on the right thing.
- Its variance $Var(\beta_1) = \frac{1}{nVar(X)}\sigma^2$ has 3 pieces:
- N
- V(X)
- sigma-squared
- (draw them all)

Eviews Regression Output Again

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:18
- Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND
- AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
- •

•	Variable	Coefficient	Std. Error	t-Statistic	Prob.
•	С	-3910.838	746.7136	-5.237401	0.0000
•	WKSWRK	910.5101	16.76971	54.29493	0.0000

•

•	R-squared	0.082550	Mean dependent var	34029.35
•	Adjusted R-squared	0.082522	S.D. dependent var	49743.57
•	S.E. of regression	47646.91	Akaike info criterion	24.38108
•	Sum squared resid	7.44E+13	Schwarz criterion	24.38160
•	Log likelihood	-399421.1	Hannan-Quinn criter.	24.38125
•	F-statistic	2947.939	Durbin-Watson stat	2.110695

• Prob(F-statistic) 0.000000

Is That Coefficient Interesting?

- Weeks worked is correlated with a lot of things, eg, the young and old don't work as many weeks.
- Add age
 - Recode agegrp into age:

– series

age=@recode(agegrp=6,16,@recode(agegrp=7,18,@recode(agegrp=8,22,@recode(agegrp=9,27,@recode(agegrp=10,32,@recode(agegrp=1,37,@recode(agegrp=14,52,@recode(agegrp=15,57,@recode(agegrp=16,62,age)))))))))))))

- Series age2=age*age
- Add age and age2 to regression equation

Regression with More Regressors

- Dependent Variable: WAGES
- Method: Least Squares
- Date: 10/19/10 Time: 10:29
- Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND AGEGRP>5 AND AGEGRP<17
- Included observations: 32765
- •

•	Variable	Coefficient	Std. Error	t-Statistic	Prob.
•	С	-46106.19	2375.629	-19.40800	0.0000
•	WKSWRK	745.2725	17.73693	42.01811	0.0000
•	AGE	2125.442	134.6076	15.78991	0.0000
•	AGE2	-20.15367	1.683832	-11.96893	0.0000

•

•	R-squared	0.103843	Mean dependent var	34029.35
•	Adjusted R-squared	0.103761	S.D. dependent var	49743.57
•	S.E. of regression	47092.19	Akaike info criterion	24.35772
•	Sum squared resid	7.27E+13	Schwarz criterion	24.35875
•	Log likelihood	-399036.4	Hannan-Quinn criter.	24.35805
•	F-statistic	1265.405	Durbin-Watson stat	2.110714

• Prob(F-statistic) 0.000000

New Regressors

- Age
 - What is the marginal effect of age on the conditional expectation of earnings?

 $\frac{\partial E[Y]}{\partial age} = \beta_{age} + 2\beta_{age2} * age = \$2125 - \$20 * age$

The marginal effect depends on age.

- Why did the coefficient on weeks worked change?
 - Age and age² were previously in the error term.
 - They are correlated with weeks worked.