Regression



Notation

We need to extend our notation of the regression function to reflect thenum
of observations.

As usual, we’ll work with an iid random samplerobbservations.

If we use the subscripto indicate a particular observation in our sample, our
regression function with one independent variable is:

Y. =6,+BX +¢& fori=12....n
So really we havn equations (one for each observati

Y, =5, +BX +&
Y, =5+ B X, +&,

Yn :/80 +/81Xn +£n
Notice that the coefficieny andpg, arethe same in each equation. The only
thing that varies across equations is the dfta) and the errog;.




Notation

If we have more (sak) independent variables, then we need to
extend our notation further.

We could use a different letter for each variabke,(X, Z, Wetc.)
but instead we usually just introduce another suitson theX.

So now we have two subscripts: one for the variablaber (first
subscript) and one for the observation number (ssabscript).

Yi :,80 +131X]j +182X2i +,33X3i +"'+,3kxki t&
What do the regression coefficients measure novey ahnepartial
derivatives, or marginal effects. That is,

aY, aY, aY,
181:_ '82:_ ...ﬁk:_
axli aXzi ain
S0,5,; measures the effect dhof a one unit increase X;;
holding all the other variables X, , X5, ..., X,; and & constant.



Data Generating Function

Assume that the dadaandY satisfy (are generated by):

Y, =y + B Xy + By Xy + o Xy +-+ [ X HE
The coefficientsf) and the errors() arenot observed.
Sometimes our primary interest is the coefficients themselves
— p. measures thearginal effect of variableX,; on the dependent variabte
Sometimes we're more interested in predicY;
— if we have sample estimates of the coefficients, we caunledépredicted

values: = = = = =
Y, =B+ B X+ B X, +-+ B X

In either case, we need a way to estimate the unkpgtsvn
— That is, we need a way to compyts from a sample of data

It turns out there are lots of ways to estimateﬁtlse(compute[; 's).
By far the most common method is caldinary least squares (OLYS).




Linearity

There ar@dwo kinds of linearity present in the regression model
Y. =L+ Xy + Lo Xy + o X+ B X &
This regression function Ieear in X.

— counter-example: ¥ f, + X2
This regression function linear in the coefficients 5, andg;

— counter-example: ¥ g, + X/
Neither kind of linearity is necessary for estiroatin general

We focus our attention mostly on what econometnigieall thdinear
regression model.

The linear regression modwadquires linearity in the coefficients, burot
linearity in X.

— When we say “linear regression model” we mean a model thae& in the
coefficients




The Error Term

Econometricians recognize that the regression knmes never amxact
representation of the relationship between depdradehindependent
variables.
— e.g., there is no exact relationship between incPfpand education, gender, etc.,
because of things like luck

There isalways some variation irY that cannot be explained by the model.

There are many possible reasons: there might beofitant” explanatory
variables that we leave out of the model; we migive the wron
functional form {), variables might be measured with error, or maybe
there’s just some randomness in outcomes.

These are all sources@fror. To reflect these kinds of error, we include a
stochastic (random) error term in the model.

The error term reflects all the variation¥rithat cannot be explained by
Usually, we use epsilor)(to represent the error term.



More About the Error Term

It is helpful to think of the model as having two components:

1.adeterministilnon-random) component

2.astochastiqrandom) component

Basically, we are decomposiiygnto the part that we can
explain using and the part that we cannot explain ustg
(.e., the errok)

We usually assume things about the esror
| want to assume|[g|X]=0 andE[g|¢]=0 for a while.
— This is overly strong, but is okay for a while.



Conditional Expectation Functions

e The mean of the condltlopal dis rlbutlon\o iven X is called theconditional
expectation (or conditional mean) of Y X.

« It's the expected value o, given thaiX takes a particular value.

e From Review 1, in eneral It 1S computed.just like a re r (uncondi
expectation, but us%s the conditiona Hlstrlgautlon Inste gduoa‘} ﬁe margl%al.

— If Ytakes one ok possible valueg,, v,, ..., ythen:

|5(\(|><:x):zl(:>/i P{Y=vy | X =x)

=1
« The conditional expectatlon ofgiven the linear regression

model
Y, =Ly + BXy + B, Xy + B X5+ X +E

e IS

E[Y | X=X, %= K]1=6+ B X+L, X% +B: %+ +4 X

 becauseE[e | X, = X;,... X = X. ]=0




Marginal Effect

o Glven these assumptions on the error term, we
can strengthen the meaning of the coefficient:
It Is the marginal effect ok on', regardless of
the value ot.

* This Is because the derivativeY with respec
to X, which coulddepend on the value of
through the dependencesdn X, does not
depend on the value of

— Prove this via application of the chain rule.



What is Known, What is Unknown, and
What is Assumed

It is useful to summarize what is known, what i&mumwn, and what
IS hypothesized.

Known: Y, andX;;, Xy, ..., X (the data)

Unknown: 5,, 1, 5, ... ,f andg, (the coefficients and errors)

Hypothesized: the form of the regression function, e.g.,
EQY | X) =g+ B1Xe + BoXoi + BiX
We use the observed data to learn about the unisGoefficients

and errors), and then we can test the hypothegiizedof the
regression function.

We can hope to learn a lot about fisebecause they are the same for
each observation.

We can’t hope to learn much about thbecause there is only one
observation on each of them.



Even Simpler Regression

Suppose we have a linear regression model withraependent
variable and NO INTERCEPT: Y=[BX +¢

Suppose also that

E[£] =0 and B(& )] =o? and E(Sié‘,-) =0 foralli |

Now, define an estimator as the numjger  thatmiges the sum
of the squared prediction error

§=Y-BX%
VI DE ) (Y-Bx%) =2 ¥ -2 (2 )+ 38 X

,5 i=1 i=1 i=1 i=1 i=1




e Min

Minimisation

 The squared leading term doesn’t havqé

2

n (%) (Ax)
2221:(x, )+2/32(
> (%) +BY( ?)
 First-Order Condition Al_n1 nl_1
BR(*7) =2 (¥ X)
CYXY
,8= in:1
(%)

’)=0

0




OLS Coefficients are Sample Means

The estimated coefficient is a weighted averaghe¥'s:

ilel n

B="2—=>wY

n

(x)

1

X.

W

It is a function of the data (a special kind of gégmean), and so it
IS astatistic

It can be used to estimate something we are Iineet@s: the
population value ofz

Since it Is a statistic, it has a sampling disttib that we can
evaluate for bias and variance.



e Substitute int(_) the est_imatpr and take an _expea:tati

Bias

PretendX is not random. Remember assumptions from above:

Y, =BX +¢
2 2 .

E[&] =0 and H(g )] =0 and E(sisj) =0 foralli |

XY | X x(BX%+e)
E|B|=E 22— |= g2
2() | XX
X (%) _iX&_
= pE| =, +E| S |=p+0=p
2| |2




Variance

n
Xi&
=1

V| B|= E{(,[A?— E[/}]ﬂ: = i(xiz) i (Zn:(iz)jz EH.Z”; * T}

SE[ X X+ X XE£,+.+ X Xe £, X XE£E ]




Simple Linear Regression

Suppose now that we have a linear regression nvatebne
independent variable and an intercept= B +B.X +&
[ 0 149 i

Suppose also that

E[£] =0 and B(& )] =o? and E(Sié‘,-) =0 foralli |

Now, define an estimator as the numjger  thatmiges the sum
of the squared prediction error

S =Y‘,éo‘,él>§

Min e =3 (- A




Minimisation

First-Order Condition, apply the chain rule to sgeiare function:

n aY /80 :leu
SR
» 0(Y, - B, = B X
221:( 33, )
Differentiate again: :

2> (Y - 4, —le) 22e=0

i=1

—2ixi(\q— B,%)= ZX,e:O

Mean of residuals is zero: Covariance of reS|daat!;X IS zero.

(Y -B,-BX)=0

(Y -4 -BX)=0




Minimisation

By:
-2Y (¥ - A= BiX) =0 2 X (A=A )=O
3 (v -A-hx)=0 2% (Y= (Y-BX)- B x) =0
Y-4,-5X=0 ZX(Y Y)-A(x-X)=0
AO:V_ Aly =1
2 (x-Y)
B =
Zx(x X)
FOC for,éO implies.
sowecan wntcf;’l ,

_Zn Yi_,éo_:élx =0 n — A A
Z( ) (X = X)(Y-4-5x)=0

$(x - ¥)(x-)

akv A A —_ ,élzl_ 2
;X(Yi_ 0o 1X)_0 i(Xi—Y)

i=1




OLS Coefficients are Sample Means

The estimated coefficients are weighted averagéseof's:

Q:;(fi-?)(viz-‘v):i (x-%) 1
Y-x) o TE(x-x)

i=1 i=1

b=Y-BX=Y|=-X n(x‘_y)z—% Y
' > (% -X)

i=1

It is a function of the data (a special kind of gégmean), and so it
IS astatistic

It can be used to estimate something we are Iineet@s: the
population value ofz

Since it Is a statistic, it has a sampling disttib that we can
evaluate for bias and variance.



OLS estimator is unbiased

Sx R0 -9 [S(- A amxee -y

=E| B,=12— —|= = : —
>(x-%) 2(x =)

i=1 | _ i=1

_i(xi _y)(lgo-l_ﬂl)(i + & _:80_/81?_2)
= E| iz _ —
> (x - %)

i=1

S(x-X)(x-%)| | S(x-Rs| | S(x-%)e
= BE|= + E| = ~E| iz

2(x-X] >(x) >(x7)

=p+0+0=p,




Variance of OLS estimator

Variance is more cumbersome to work out by

hand, so | won’t do it: Var(B,) = 1 2

g
Top looks like the 3 x?)-nx
“even simpler” model. 1 :
- g
1Gy2 | 32
1 >
Where V-hat is the = g

sample variance of X
V(X)=E[X*]-(E[X])*

Var( X)



In Practise...

 Knowing the summation formulas for OLS
estimates Is useful for understanding how OLS
estimation works.

— once we add more than one independent variable,
these summation formulas become cumbers

— In practice, we never do least squares calculations
by hand (that’s what computers are for)

 In fact, doing least squares regression in
EViews Is a piece of cake — time for an
example.



Example: Earnings and Weeks Worked
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Example: Earnings and Weeks Worked

Suppose we are interested in how weeks of work relate to earnings.
— our dependent variabl&) will be WAGES
— our independent variablj will be WKSWRK

After opening the EViews workfile, there are two ways to sehepgeguation:
1. select WAGES and then WKSWRK (the order is important), tigét-click
one of the selected objects, and OPEN -> AS EQUATION , withFa
WAGES<8000000 and VWKSWRK<99 in the sample box (to get rid of both
types of missing

or

2. QUICK -> ESTIMATE EQUATION and then in the EQUATION
SPECIFICATION dialog box, type:

wages ¢ wksw Kk

(the first variable in the list is the dependent variable, temang variables
are the independent variables including the intercgpnhd

| f wages<8000000 and wkswr k<99 and agegrp>5 and
agegr p<17 inthe sample box

You'll see a drop down box for the estimation METHOD, and notice ¢aast |
squares (LS) is the default. Click OK.

It's as easy as that. Print the output to rich text (MOur results should look
like the next slide ...



Data and Regression Line
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Eviews Regression Output

Dependent Variable: WAGES

Method: Least Squares

Date: 10/19/10 Time: 10:18

Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND
AGEGRP>5 AND AGEGRP<17

Included observations: 32765

Variable Coefficient Std. Error  t-Statistic  Prob.

C -3910.838 746.7136 -5.237401 0.0000
WKSWRK 910.5101 16.76971 54.29493  0.0000
R-squared 0.082550 Mean dependent var 34029.35

Adjusted R-squared 0.082522 S.D. dependent var  49743.57
S.E. of regression  47646.91 Akaike info criterion  24.38108
Sum squared resid 7.44E+13 Schwarz criterion 24.38160
Log likelihood -399421.1 Hannan-Quinn criter. 24.38125
F-statistic 2947.939 Durbin-Watson stat  2.110695
Prob(F-statistic) 0.000000



The Data and Regression Line
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Low Variance is Good

 Low variance gives you a nice accurate picture
of where the coefficient probably is.

e Low variance gives you a test statistic with
high power (if the null is false, you’ll probably
reject).



How Do You Get Low Variance?

e The OLS estimator is unbiased, so it centers on
the right thing.

* |ts variance Var(A,)=
e N

e V(X)

e sigma-squared

o’ has 3 pieces:

nVar( X)

e (draw them all)



Eviews Regression Output Again

Dependent Variable: WAGES

Method: Least Squares

Date: 10/19/10 Time: 10:18

Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND
AGEGRP>5 AND AGEGRP<17

Included observations: 32765

Variable Coefficient Std. Error  t-Statistic  Prob.

C -3910.838 746.7136 -5.237401 0.0000
WKSWRK 910.5101 16.76971 54.29493  0.0000
R-squared 0.082550 Mean dependent var 34029.35

Adjusted R-squared 0.082522 S.D. dependent var  49743.57
S.E. of regression  47646.91 Akaike info criterion  24.38108
Sum squared resid 7.44E+13 Schwarz criterion 24.38160
Log likelihood -399421.1 Hannan-Quinn criter. 24.38125
F-statistic 2947.939 Durbin-Watson stat  2.110695
Prob(F-statistic) 0.000000



Is That Coefficient Interesting?

 \Weeks worked is correlated with a lot of
things, eg, the young and old don’t work as
many weeks.

e Add age
— Recode agegrp into age:

- series
age=@recode(agegrp=6,16,@recode(agegrp=7,18, @recode(agegrp=8,22, @recode(agegrp=9,27, @recode(agegrp=10,32, @recode(agegrp=1
1,37,@recode(agegrp=12,42,@recode(agegrp=13,47, @recode(agegrp=14,52, @recode(agegrp=15,57, @recode(agegrp=16,62,age)))))))))) )

— Series age2=age*age

e Add age and age2 to regression equation



Regression with More Regressors

Dependent Variable: WAGES

Method: Least Squares

Date: 10/19/10 Time: 10:29

Sample: 1 56529 IF WAGES<8000000 AND WKSWRK<99 AND AGEGRP>5 AND AGEGRP<17
Included observations: 32765

Variable Coefficient Std. Error  t-Statistic  Prob.

C -46106.19 2375.629 -19.40800 0.0000
WKSWRK 745.2725 17.73693 42.01811 0.0000
AGE 2125.442 134.6076 15.78991 0.0000
AGE2 -20.15367 1.683832 -11.96893 0.0000
R-squared 0.103843 Mean dependent var 34029.35
Adjusted R-squared 0.103761 S.D. dependent var  49743.57
S.E. of regression  47092.19 Akaike info criterion  24.35772
Sum squared resid 7.27E+13 Schwarz criterion 24.35875
Log likelihood -399036.4 Hannan-Quinn criter. 24.35805
F-statistic 1265.405 Durbin-Watson stat  2.110714
Prob(F-statistic) 0.000000



New Regressors

e Age

— What is the marginal effect of age on the
conditional expectation of earnings?

oE[Y] _ Boge t 28 .40 Jage= $2125- $20*age
dage

— The marginal effect depends on age.

 Why did the coefficient on weeks worked change?
— Age and age? were previously in the error term.
— They are correlated with weeks worked.



